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We investigated chaotic dynamics in a microchip three-mode solid-state laser subjected to frequency-shifted
optical feedback. When the frequency shift was tuned to harmonic frequencies of the relaxation oscillation, a
bifurcation from a periodic sustained relaxation oscillation(“soft-mode”) state to a chaotic spiking(“hard-
mode”) state via a chaotic itinerancy was observed as the feedback intensity was increased. Dynamic charac-
terizations of modal interplay and self-induced switching between the soft- and hard-mode chaotic states over
times(i.e., chaotic itinerancy) were carried out by the information circulation analysis and joint time-frequency
analysis of long-term experimental time series. Drastic changes in information transfer rates among oscillating
modes and occasional frequency locking among periodicities of two chaotic states associated with switchings
were identified in chaotic itinerancy. Essential dynamical behaviors were reproduced by numerical simulation.
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I. INTRODUCTION

During the past decade, chaotic itinerancy has been rec-
ognized to be universal dynamics in a wide range of disci-
plines of high-dimensional dynamical systems, such as
Hamiltonian systems, physicochemical experiments, biology
and brain, and showing self-induced switching motion
among the ruins of coexisting dynamic states through high-
dimensional chaos[1]. Chaotic itinerancy(CI) was numeri-
cally discovered in laser systems at first[2,3], and then it was
independently proposed in a coupled map lattice[4,5] and in
neural networks[6]. The first experimental evidence of CI
was reported in a nonlinear optical resonator containing a
photorefractive cell by Arecchiet al. [7] and he initiated the
concept of “dry hydrodynamics” in optics[8] including CI,
the transverse effect, and other nonlinear optical dynamics.
CI was also demonstrated experimentally in such laser sys-
tems as a laser diode subjected to optical feedback(Lang-
Kobayashi system) [9], a self-pulsating multimode laser with
intracavity second-harmonic generation[10], and a single-
mode laser subjected to frequency-shifted optical feedback
[11]. On the other hand, much effort has gone into charac-
terizing complex behaviors like chaotic itinerancy in high-
dimensional nonlinear systems. Two promising methods
based on information theory have been proposed for high-
dimensional systems by introducing cross-information flow
rates [12], “coarse-grained” dynamic information transfer
rates[13], and information circulations among many coupled
elements[14].

In this paper, we study chaotic itinerancy among soft- and
hard-mode chaotic states in a laser-diode-pumped three-
mode microchip solid-state laser subjected to frequency-
shifted optical feedback[11], focusing on the dynamic inter-

play among oscillating modes. Dynamic characterizations in
terms of information circulation and joint time-frequency
analyses of experimental time series were carried out to iden-
tify information flows among modes and a switching sce-
nario between two dynamic states over times. The paper is
organized as follows: The experimental setup and measure-
ment procedures are presented in Sec. II. Experimental re-
sults such as an example bifurcation diagram, typical pulsa-
tion wave forms, Poincaré sections, information circulation,
and joint time-frequency analyses of experimental time se-
ries are demonstrated in Sec. III. In Sec. IV, model equations
of multimode lasers subjected to frequency-shifted optical
feedback are derived and numerical results, which reproduce
the observed phenomena qualitatively, are presented. Section
V summaries the results and discusses the physical signifi-
cance of the observed nonlinear dynamics.

II. EXPERIMENTAL SCHEME

In the work described here, we used a free-running sto-
ichiometric LiNdP4O12 (LNP) laser, operating on the
4F3/2s1d→4I11/2s1,2,3d transitions around the 1100-nm
wavelength. In this system, multilongitudinal modes can os-
cillate on the different transitions forming multiple-L
schemes, because the reabsorption effect is enhanced due to
higher Nd densities in the lower manifolds,4I11/2, inherent in
LNP lasers[15]. We demonstrated self-induced pulsations
featuring locking of modal pulsation frequencies, multidi-
mensional quasiperiodic pulsations, and the formation of an
intermode information network, in high-pump-power re-
gimes where quantum interference effects among lower-level
atoms are significant[15].

It is well known that free-running multimode solid-state
lasers with spatial hole burning of population inversions ex-
hibit an inherent antiphase dynamics in which each mode
featuresN relaxation oscillation components(N, number of*Electronic address: ootsuka@keyaki.cc.tokai-u.ac.jp
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oscillating modes) fRO. f2. ¯ . fN while lower-frequency
components except for the highest McCumber frequency
fRO, appearing through cross-saturation dynamics are
strongly suppressed for the total output[16]. When pump or
loss modulation is applied to such lasers, chaotic oscillations
are easily obtained by tuning the modulation frequency to
fRO [16]. On the other hand, we found that chaotic itinerancy
can take place when the modulation frequency was tuned to
the harmonic frequencies of relaxation oscillations—i.e.,fs
=nfRO—in a single-mode laser by means of frequency-
shifted optical feedback[11], in which the laser is equiva-
lently loss modulated atfs.

In the present work, on the other hand, the multimode
LNP laser was operated below the Hopf bifurcation threshold
and chaotic behaviors were induced by frequency-shifted op-
tical feedback. In this scheme, the chaotic itinerancy between
chaotic relaxation oscillations(“soft” mode) born from a las-
ing stationary state and spiking oscillations(“hard” mode)
built up from a nonlasing stationary state is expected to oc-
cur similar to the single-mode regime[11]. If this is the case,
the system could provide a promising model for investigat-
ing multimode chaotic itinerancy among these two inherent
dynamic states in lasers. We will first explain the experimen-
tal setup we used.

A model laser system for investigating the multimode dy-
namics on aL transition was configured by controlling the
operating condition of a LD-pumped 0.3-mm-thick LNP la-
ser, with directly coated mirrorsM1 (reflectivity R1.99.9%
at lasing wavelengths, transmission.95% at 808 nm) and
M2 sR2=98%d, subjected to frequency-shifted optical feed-
back as shown in Fig. 1. Two PbMoO4 acousto-optic modu-
lators (AOM1 is for upward frequency shift offAOM,1;
AOM2 is for downward frequency shift offAOM,2) inserted in
the optical feedback path introduced a round-trip frequency
shift of fs=2sfAOM,1− fAOM,2d to the feedback light. In the
present study on three-mode operations, we tunedfs to 2fRO.

III. EXPERIMENTAL RESULTS FOR HARMONIC
MODULATION

A. Input-output characteristics and oscillation spectrum

Global oscillation spectra were measured by a multiwave-
length meter(HP-86120B: wavelength range 700–1650 nm)
as a function of the pump power. Modal input-output char-
acteristics and an example oscillation spectrum are shown in
Figs. 2(a) and 2(b). Here, modes 1, 2, and 3 indicate the first
oscillating mode on the4F3/2s1d→4I11/2s1d transition at
1048-nm wavelength, the second lasing adjacent mode on
the same transition, and the third lasing mode on the
4F3/2s1d→4I11/2s2d transition at 1055-nm wavelength, re-
spectively. The dynamic instability due to quantum interfer-
ence was not induced in the pump power level shown in Fig.
2(a).

B. Bifurcation diagram and dynamic states

Let us show an experimental bifurcation diagram and
typical pulsation wave forms for different dynamic states
when the LNP laser was subjected to harmonic modulations,
in which the round-trip frequency shiftfs was tuned to twice
the relaxation oscillation frequency—i.e.,fs=2fRO. An ex-
ample bifurcation diagram is shown in Fig. 3 when the the
light intensity impinged on the feedback mirror was changed
by a variable optical attenuator, in which SRO, CSO, and CI
denote the periodic sustained relaxation oscillation(soft
mode), the chaotic spiking oscillation(hard mode), and the
chaotic itinerancy between chaotic soft-mode and hard-mode
oscillations. Because 5000 peak values collected from the
long-term experimental time series were plotted in Fig. 3, the
fluctuation of peak values in the SRO regime may have been
caused by the pump fluctuation and the intrinsic noise. A
subharmonic bifurcation structure leading to CI, which will
be shown numerically in Sec. IV, was not identified experi-
mentally.

In the transition process from the low-dimensional or-
dered states(i.e., periodic soft mode), exhibiting periodic
sustained relaxation oscillations, to the high-dimensional
global chaos(i.e., chaotic hard mode) featuring spiking os-
cillations, the system showed random switching between
chaotic soft-mode and hard-mode oscillations. Here, each
modal output was selected by a monochrometer and was
measured by an InGaAs photodiode(New Focus 1811: DC-
125 MHz) followed by a digital oscilloscope(Tektronix TDS

FIG. 1. Experimental setup of a microchip multimode LNP laser
subjected to frequency-shifted optical feedback. LNP, LiNdP4O12

laser; BS, beam splitter; AOM, acoustooptic modulator; MO, mono-
chrometer; PD, photodiode; DO, digital oscilloscope.

FIG. 2. (a) Input-output characteristics of an LNP laser.(b) Os-
cillation spectrum at pump powerP=211 mW.
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540D: DC-500 MHz). Typical oscillation wave forms in dif-
ferent dynamic states—i.e., SRO, CSO, and CI—are shown
in Figs. 4–6 respectively. Note that three modes exhibit in-
phase oscillations in the SRO regime as shown in the inset of
Fig. 4. At the present pump power, the in-phase dynamics is
maintained in the time domain of soft-mode chaos in CI, as
shown in the inset of Fig. 6, suggesting phase synchroniza-
tion [17] among three modes. The chaotic itinerancy took
place generally for different pump-power levels as well, in
which different types of collective chaos synchronization
were often observed in the soft-mode chaos, depending on
modal intensity ratios[14]. In the hard-mode(i.e., spiking)
chaos(CSO) domain, on the other hand, no correlations were
observed as shown in the inset of Fig. 5.

An example Poincaré section on thefs2,s28g plane con-
structed from experimental time series in the chaotic itiner-
ancy regime shown in Fig. 6 is depicted in Fig. 7, wheres2

and s28 are intensity of mode 2 and its time derivative. It
should be noted that Poincaré sections of the soft-mode
chaos[Figs. 7(a) and 7(c)] and the hard-mode chaos[Fig.
7(b)] show qualitatively different topologies. The structure
which suggests intermittency or heteroclinic crossing was
not identified. Therefore, the present switching behavior
could be interpreted in terms of chaotic itinerancy[11].

C. Information circulation analysis

The observed bifurcation scenario leading to chaotic spik-
ing oscillations via CI was already demonstrated in the
single-mode regime[11]. Therefore, the present bifurcation
route to global chaos is found to be generic in class-B lasers
subjected to harmonic modulations, in which two ordered
dynamic states—namely, soft- and hard-modes—coexist in

FIG. 3. Bifurcation diagram as a function of the light intensity
attenuation ratioR by the variable attenuator. Here, successive peak
values are plotted.

FIG. 4. Modal intensity wave forms in the sustained relaxation
oscillation (SRO) regime.P=161 mW,R=0.319.

FIG. 5. Modal intensity wave forms in the chaotic spiking os-
cillation (CSO) regime.P=161 mW,R=0.767.

FIG. 6. Modal intensity wave forms in the chaotic itinerancy
(CI) regime.P=161 mW,R=0.527.
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the phase space[11,16]. Then, the question arises, what kind
of dynamic interplay does appear between oscillating modes
in the chaotic itinerancy regime? In order to study this issue,
we introduced the information-theoretic approach to charac-
terize high-dimensional dynamic behaviors by using the
coarse-grained information transfer rate among modes
[13]—i.e., information circulation analysis[14].

The information circulation is defined asTX,Y=TX→Y
−TY→X, TX→Y=s1/t* dotSsY,Yt uXd−s1/t* dotSsY,Ytd is
the coarse-grained information transfer rate from time series
X=hxstdj to time seriesY=hystdj, and SsY,Ytd is the self-
mutual information forY. HereSsY,Yt uXd is the conditional
self-mutual information of time seriesY given time seriesX
[18] where t* is the first local minimum ofSsY,Ytd [19].
The information circulationTi,j is the “net” information flow
among the two modes, and ifTi,j .0s,0d, the information
flows from modeis jd to modejsid [14].

Dynamic changes in information transfer rates and the
resultant information circulations among modes calculated
from experimental time series shown in Fig. 4(SRO) are
presented in Fig. 8. Note that thestrongestintensity mode 1
acts as an information sender, which sends the information to
other modes 2 and 3, while theweakestintensity mode 3
behaves as an information receiver which receives the infor-
mation from other modes 1 and 2. The remainingintermedi-
ate intensity mode 2 receives the information from the
sender mode 1 and transfers it to the receiver mode 3, acting
as an information mediator. The present information
network—i.e., causal information sender-mediator-receiver
relationship—was found to be always established in the SRO
regime. In the chaotic spiking oscillation(i.e., CSO) regime
shown in Fig. 5, on the other hand, intermode information
transfer rates among modes became greatly reduced as com-
pared with those in the CRO regime and causal relationships
among modes became unfixed, while the small amount of
unidirectional information flow from mode 1 to mode 2 was
maintained. Results are shown in Fig. 9.

In the chaotic itinerancy(CI) regime shown in Fig. 6,
intermode information flows were found to change abruptly

in accordance with switchings between chaotic soft- and
hard-mode pulsations over times. Results are shown in Fig.
10. Despite random switchings, the information sender-
mediator-receiver relationship shown in Fig. 8 was kept dur-
ing nonperiodic soft-mode pulsations. However, this infor-
mation network is destroyed and information flows similar to
those in the CSO regime shown in Fig. 9 appear occasionally
when spiking oscillations take place, in which the strongest
mode 1 still acts as an information sender. This may imply
that the strongest intensity mode plays the leading role acting
as the information sender in the whole temporal evolution.

D. Joint time-frequency analysis

Let us examine the essential problem concerning the ob-
served chaotic itinerancy in the multimode laser, in which all

FIG. 7. Poincaré sections calculated from the experimental time
series in the CI regime shown in Fig. 6.

FIG. 8. Information flows among modes in the SRO regime
calculated from the time series shown in Fig. 4.(a) Information
transfer rates,(b) information circulations.

FIG. 9. Information flows among modes in the CSO regime
calculated from the time series shown in Fig. 5.(a) Information
transfer rates,(b) information circulations.
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the oscillating modes exhibit random switchings simulta-
neously over times as shown in Fig. 6, by using the joint
time-frequency analysis(JTFA) of experimental time series
[10]. The same characterization was done for the single-
mode laser subjected to the harmonic modulation previously
and we showed that frequency locking between the two pe-
riodicities of soft-mode relaxation oscillation and hard-mode
spiking oscillation occurs in accordance with the switching
[11].

In the present study, we applied JTFA to the three-mode
case and the switching mechanism was identified paying the
special attention to the modal JTFA signal. Typical results
corresponding to the time series given in Fig. 6 are shown in
Fig. 11, in which modal JTFA signals are presented. In the
chaotic soft-mode regime, globally coupled modes exhibited
the periodicity offRO and its higher harmonics, featuring the
phase synchronization mentioned in Sec. III, which satisfies
the inherent antiphase dynamics. In the chaotic hard-mode
regime, a power spectrum broadened featuring the lower fun-
damental pulsation frequencyfSO, fRO, in which the phase
synchronization failed. It is obvious from Fig. 11 that the

switching from soft-mode to hard-mode pulsation takes place
when the subharmonic component of chaotic soft-mode os-
cillation was enhanced during the course of temporal evolu-
tion and excited spiking the hard mode through frequency
locking of fRO/3= fSO. In short, switching takes place
through temporal frequency locking of the two periodicities
similar to the single-mode case[11]. The key feature in the
multimode case is that switching occurs when the highest
relaxation oscillation frequencyfRO indicates subharmonic
locking with the spiking frequencyfSO, while lower relax-
ation oscillation componentsf2 and f3 do not play the essen-
tial role in switchings. Therefore, the inherent antiphase dy-
namics holds in the chaotic itinerancy regime such that the
total output behaves just like a single-mode laser[16] and all
the modes exhibit cooperative switchings simultaneously.

IV. NUMERICAL SIMULATION

A. Rate equation for lasers subjected to harmonic modulation

The fundamental equation for the model of class-B lasers
subjected to frequency-shifted optical feedback is given by
coupled stochastic delay-differential equations for population
inversion, electric field including phase and spontaneous
emission noise as described in Ref.[11]. Under the weak
feedback condition—i.e., frequency shiftfs@m/tp (m
=Es/Eo, field amplitude feedback ratiotp, photon lifetime)—
the equations become equivalent to those of loss-modulated
lasers at frequencyfs. Then, the following simplified rate
equations are derived in the short-delay limit—i.e.,tD! fRO

−1

[15]—such as in the present experiment:

dnk

dt
= w − nk − gknkssk + o bk,jsjd , s1d

dsk

dt
= Khfgknk − Gkgsk + hsk cosVstj, s2d

k = 1,2,3, j Þ k.

Here,w is the relative pump power normalized by the first-
mode threshold,nk is the normalized population inversion
density of thekth mode,sk is the normalized photon density,
K is the fluorescence-to-photon lifetime ratio,t /tp, time is
scaled by the fluorescence lifetime,gk is the modal gain ratio
with respect to the first mode,Gk s=fL0+2akLg / fL0

+2a1Lgd is the modal loss ratio(L0, common cavity loss;ak,
reabsorption coefficient;L, crystal length), bk,j is the cross-
saturation coefficient,h=m2 is the intensity feedback ratio,
andVs=2pfst is the normalized frequency shift. The spon-
taneous emission noise is neglected. Additionally, the nonlin-
ear stimulated absorption coefficient resulting from quantum
interference among lower-level atoms[15] is omitted with-
out essential loss of the physics of loss-modulated lasers be-
cause we examine dynamics below the Hopf bifurcation
point.

B. Bifurcation diagram and dynamic states

Calculated input-output characteristics for modal intensi-
ties s1, s2, ands3 are shown in Fig. 12, where relevant spec-

FIG. 10. Information flows among modes in the CI regime cal-
culated from the time series shown in Fig. 6.(a) Information trans-
fer rates,(b) information circulations.

FIG. 11. Joint time-frequency analysis of the time series shown
in Fig. 6 in the CI regime. Calculations were carried out using a
moving window with a length ofTw=2048 data pointss40.96msd
and a moving stepTs with a length of 256 data pointss5.12msd,
where the light intensity was partitioned intoIs=16 values to cal-
culate intensity probability distributions.
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troscopic data for LNP lasers are assumed. Here, modes 1
and 2 are on the 1048-nm transition and mode 3 is on the
1055-nm transition similar to the experimental situation. A
bifurcation diagram as a function of the intensity feedback
ratio is shown in Fig. 13 together with the largest Lyapunov
exponent, where the period-1-cycle SRO region in the re-
gime of low feedback ratio is omitted. The observed bifur-
cation diagram from SRO to CSO via chaotic itinerancy is
well reproduced by numerical simulation shown in Fig. 13.
Example wave forms in the CI regime are indicated in Fig.
14(a).

In order to extract further information inherent in chaotic
itinerancy from numerical time series, we calculated tempo-
ral evolutions of largest “local” Lyapunov exponents for dif-
ferent dynamic states. Here, theith one-dimensional local
Lyapunov exponent is defined in terms of the length of the

ellipsoidal principle axis of ann-ellipsoid (n=6 in the
present case) Pistd:

listd =
1

Dt
log2

Pist + Dtd
Pistd

. s3d

Results are shown in Figs. 15(a)–15(c), together with stan-
dard deviations as a function of feedback ratio[Fig. 15(d)].
Here, the averaging timeDt for calculating local Lyapunov
exponents was 80. It is obvious that the local Lyapunov ex-
ponent in CI fluctuates wildly in time as compared with other
states, reflecting the nonstationary nature of chaotic itiner-
ancy.

FIG. 12. Numerically calculated input-output characteristics.
Adopted parameter values areK=1000,g1=1, g2=0.95,g3=0.50,
b1,2=0.923, b1,3=b2,3=2/3, L=0.03 cm, L0=0.0297, a1=a2

=0.11 cm−1, anda3=0.0407 cm−1.

FIG. 13. The largest Lyapunov exponent(a) and bifurcation
diagram(b) as a function of the feedback ratio,h, calculated from
numerical time series.w=3.12. Other adopted parameter values are
the same as Fig. 12.

FIG. 14. (a) Numerical result of modal intensity wave forms in
the CI regime.(b) Joint time-frequency analysis of the numerical
time series shown in(a). w=3.12,h=0.111.

FIG. 15. (a), (b), (c) Temporal evolutions of local Lyapunov
exponents in three regimes.(d) Standard deviation as a function of
the feedback ratio.w=3.12.
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C. Information circulation and joint time-frequency analysis

Finally, let us show information flows among modes in-
dicating the establishment of a causal information sender-
mediator-receiver relationship and parametric resonance of
two periodicities of SRO and CSO by using numerical time
series in the CI regime.

Figure 16 shows coarse-grained information transfer rates
and the resultant information circulations among modes cal-
culated from numerical time series shown in Fig. 14(a). Ex-
perimental results shown in Fig. 10 are found to be repro-
duced by the simulation qualitatively. The simulated JTFA
signals are shown in Fig. 14(b) which indicates temporal 1/3
frequency locking among two periodicities between chaotic
soft-mode and hard-mode pulsations associated with switch-
ings.

The present numerical simulation without noise can re-
produce the essential features of the observed “deterministic”

chaotic itinerancy qualitatively in a wide parameter region.
In order to achieve further detailed quantitative agreement
with the experimental time series, however, a further precise
tuning of operating parameters—e.g.,w, L0, and h—is
needed. Additionally, in a real experimental system, the
spontaneous emission noise has an additional effect on the
chaotic itinerancy because the periodicity of the spiking os-
cillation depends on the spontaneous emission rate[11]

V. CONCLUSION

In conclusion, we investigated the chaotic itinerancy route
to chaotic spiking oscillations in a three-mode laser sub-
jected to frequency-shifted optical feedback. Dynamic char-
acterizations of bifurcated dynamic states were carried out by
using experimental time series of modal outputs. The
information-theoretic analysis in terms of coarse-grained in-
formation transfer rates and the resultant information circu-
lation has identified the causal information sender-mediator-
receiver relationship among modes established depending on
the difference in modal intensities. The joint time-frequency
analysis revealed that the occasional frequency locking of
two periodicities of relaxation oscillations and spiking oscil-
lations for the total output over times provides the key
mechanism with simultaneous random switchings among the
two chaotic states. The essential features of observed phe-
nomena were reproduced qualitatively by simulation of the
simplified model equations of multimode lasers subjected to
harmonic-frequency loss modulation.

Generic features of intermittency or heteroclinic crossing
were not identified in Poincaré sections which were con-
structed by using experimental time series. The nonlinear
physical mechanism—i.e., “temporal locking of two period-
icities” in the present laser system—might play an essential
role in creating an easy switching path among two dynamic
states in the present chaotic itinerancy similar to other laser
models [2,3,9]. In the usual intermittent or heteroclinic
chaos, the switching path is well defined in the phase space
according to the bifurcation rule of dynamic equations. The
change in switching probability against the change in feed-

FIG. 16. Numerical result of information flows among modes in
the CI regime.w=3.12,h=0.111.Tw=2048 data points and a mov-
ing stepTs with a length of 256 data points, where the light inten-
sity was partitioned intoIs=16 values to calculate intensity prob-
ability distributions.

FIG. 17. Phase correlation plots indicating
chaotic itinerancy between phase-synchronized
and -unsynchronized chaos calculated from the
time series shown in Fig. 6.(a) Soft-mode chaos
domain,(b) hard-mode chaos domain.
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back ratio from the critical value for the occurrence of CI,
calculated from extremely long-term time series, would pro-
vide insight into general features of the chaotic itinerancy.

APPENDIX: DYNAMIC SWITCHING BETWEEN PHASE
SYNCHRONIZED AND UNSYNCHRONIZED

CHAOS

In the chaotic itinerancy observed under the pumping con-
dition shown in Fig. 6, strong phase correlations appeared
among modal output wave forms in the time domain of soft-
mode chaos. In this appendix, we show phase correlation
plots indicating such an interesting switching behavior be-
tween phase-correlated chaos and unsynchronized chaos over
time.

Let us examine the phase correlation among modal inten-
sity wave forms by extracting the analytical phase from ex-
perimental time series. Using the Hilbert transformation of
time series—i.e., Gabor’s analytic signal used in the analysis

of phase synchronization[17]—we calculated the analytic
phase correlation of three modes. The analytic phasefstd is
related to the analytic signalVA and its time averagekVAl by
VAstd−kVAl=RAstdeifstd. Here, VAstd= Istd+ iI Hstd where Istd
is the time series of scalar intensity andIH is the its Hilbert
transform. Results obtained from the time series shown in
Fig. 6 are shown in Figs. 17(a) and 17(b) for soft- and hard-
mode chaos, respectively, where(a) indicates the phase cor-
relations of long-term modal output time series before
switching to the hard-mode chaos in Fig. 6. The same corre-
lations were obtained for time series of soft-mode chaos after
the hard-mode chaos in Fig. 6. There were no intensity cor-
relations among modes for both cases, so intensity correla-
tion plots are not shown. It is apparent that the soft-mode
chaos centers the plot about the diagonal, especially for
modes 1 and 2, demonstrating phase synchronization in the
time domain of chaotic SRO, as shown in Fig. 17(a). In the
domain of CSO(i.e., hard-mode chaos), synchronization
fails as shown in Fig. 17(b).
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